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Temporal 101 with Go

Temporal 101 with Java In this course, you will explore the basic building blocks of Temporal: Workflows and Activities. You'll use these building blocks along with Temporal's Go

Se |f paced O n I | n e CO u rses th at p rov | d e SDK to develop a small application that communicates with an external service. You'll see how Temporal helps you recover from failures and explore
= Temporal 101 with TypeScript

Temporal's execution model and event history. You'll use the Temporal Web Ul and Temporal’s command-line tools to explore and interact with your
. d th h d Temporal 101 with Python Workflows, and you'll use what you've learned to add new features to your existing Workflow.
In ep anas-on Temporal 102

learning experiences.

Example applications

When you've completed the course, you'll be able to:

Configure an environment for developing Temporal Applications
Use Temporal to describe and implement a business process

Interpret Temporal's Workflow execution model

[} Tem po ral 1 0 1 Use Temporal's tooling to manage the lifecycle of your application
e Temporal 102

* Temporal 101 with Go * Temporal 101 with Java

Py I n-t ro -to Te m poral C I o u d Discover the essentials of Temporal application development in this course, £ ral Java SDK
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Last month, we gathered Temporal
experts from around the world to
share best practices and how-to's.

You can check out ALL the
videos at the Replay site:

https://temporal.io/replay/videos
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Implementing Batch Jobs
With Temporal
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Definition of batch
Naive Approach
Heartbeating Activity
lterator Workflow
Sliding Window



Batch Job

Workflow
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Naive

public int processBatch() {
List<SingleRecord> records = recordLoader.getRecords();
for (SingleRecord record : records) {
RecordProcessorWorkflow processor =
Workflow.newChildWorkflowStub(RecordProcessorWorkflow.class);
processor.processRecord(record);

}

return records.size();



Naive Implementation

e Drawback
o Batch size limit
e Advantage
o Simplicity
e Improvements
o Parallel record processing



Activity

public int processRecords() {
for (int i = 0; ; i++) {
Optional<SingleRecord> record = recordLoader.getRecord(i);
if (!record.isPresent()) {
return i;

}

recordProcessor.processRecord(record.get());



Activity

e Drawbacks

o Only fast record processing

o No poison pill support

o Reprocessing of the whole dataset on retries
e Advantage

o Low resource utilization
e |Improvements

o Parallel record processing

o Parallel activities



Activity

e Drawbacks

o Only fast record processing

o No poison pill support

o Reprocessing of the whole dataset on retries
e Advantage

o Low resource utilization
e Improvements

o Parallel record processing

o Parallel activities

o Activity heartbeating



Heartbeating Activity

public int processRecords() {

ActivityExecutionContext context = Activity.getExecutionContext();
Optional<Integer> heartbeatDetails = context.getHeartbeatDetails(Integer.class)
int offset = heartbeatDetails.orElse( other: 0);
while (true) {

Optional<SingleRecord> record = recordLoader.getRecord(offset);

if (!record.isPresent()) {

return offset;

}

recordProcessor.processRecord(record.get());

offset++;



Heartbeating Activity Workflow

public final class HeartbeatingActivityBatchWorkflowImpl
implements HeartbeatingActivityBatchWorkflow {

private final RecordProcessorActivity recordProcessor =
Workflow.newActivityStub(
RecordProcessorActivity.class,
ActivityOptions.newBuilder()
.setStartToCloseTimeout (Duration.ofHours(1))
.setHeartbeatTimeout (Duration.ofSeconds(10))
.build());

@Override
public int processBatch() {
return recordProcessor.processRecords();



Heartbeating Activity

e Drawbacks
o Only fast record processing
o No poison pill support

e Advantage
o Low resource utilization

e Improvements
o Parallel record processing
o Parallel activities



Iterator Workflow

e Load a page of records using an activity
e Process each record by a child workflow
e (Call continue-as-new to process the rest of records



Iterator Workflow

public int processBatch(int pageSize, int offset) {

List<SingleRecord> records = recordLoader.getRecords(pageSize, offset);

for (SingleRecord record : records) {
RecordProcessorWorkflow processor =

Workflow.newChildWorkflowStub(RecordProcessorWorkflow.class);

processor.processRecord(record);

}

if (records.isEmpty()) {
return offset;

}

return nextRun.processBatch(pageSize, offset: offset + records.size());



Iterator Workflow

e Drawbacks
o The throughput depends on the slowest workflow in
each iteration
o Creates spiky resource utilization pattern
e Advantage
o Unlimited dataset size
e |Improvements
o Parallel record processing
o Parallel iterator workflows



Sliding Window

Starts a predefined number (window size) of child workflows
Parent calls continue-as-new

A child upon processing a record signals the parent

The parent starts the next child workflow upon receiving the signal



Sliding Window

e Drawbacks

o Complexity
e Advantage

o Even resource utilization
e Improvements

o Parallel sliding windows



Recap

Naive

Heartbeating activity
lterator

Sliding Window

https://qithub.com/temporalio/samples-java/tree/main/core/src/main/java/io/tempo
ral/samples/batch

https://github.com/temporalio/samples-go/tree/main/batch-sliding-window



https://github.com/temporalio/samples-java/tree/main/core/src/main/java/io/temporal/samples/batch
https://github.com/temporalio/samples-java/tree/main/core/src/main/java/io/temporal/samples/batch
https://github.com/temporalio/samples-go/tree/main/batch-sliding-window
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