WELCOME...

TEMPORAL LONDON MEETUP!

AGENDA

WELGOME

IMPLEMENTING BATCH JOBS WITH TEMPORAL
SCALING LONG RUNNING OPERATIONS AT SNYK
FROM POC TO PRODUCTION WITH TEMPORAL

HAS COME TO TEMPORAL CLOUD

Run‘thousands of actions per second
across regions without breaking sweat.

o # LEARN Temporal X + v
& (&) https:/www.temporal.ioflearn & 0O H
#Temporal How it Works Docs Learn Cloud Pricing Blog UseCases Replay © Sign Up for Cloud
Home A > Courses > Temporal101
Get started with Temporal >
T emporal 101
Introduction to Temporal Cloud

Temporal 101 N Lastupdated on Feb 17, 2023 Tags: courses

Temporal 101 with Go

Temporal 101 with Java In this course, you will explore the basic building blocks of Temporal: Workflows and Activities. You'll use these building blocks along with Temporal's Go

Se |f paced O n I | n e CO u rses th at p rov | d e SDK to develop a small application that communicates with an external service. You'll see how Temporal helps you recover from failures and explore
= Temporal 101 with TypeScript

Temporal's execution model and event history. You'll use the Temporal Web Ul and Temporal’s command-line tools to explore and interact with your
. d th h d Temporal 101 with Python Workflows, and you'll use what you've learned to add new features to your existing Workflow.
In ep anas-on Temporal 102

learning experiences.

Example applications

When you've completed the course, you'll be able to:

Configure an environment for developing Temporal Applications
Use Temporal to describe and implement a business process

Interpret Temporal's Workflow execution model

[} Tem po ral 1 0 1 Use Temporal's tooling to manage the lifecycle of your application
e Temporal 102

* Temporal 101 with Go * Temporal 101 with Java

Py I n-t ro -to Te m poral C I o u d Discover the essentials of Temporal application development in this course, £ ral Java SDK

https://learn.temporal.io/courses * Temporal 101 with Typese * Temporal 101 with

tion development in this cours: cover the essentials of Ten

Last updated on Feb 17, 2023

Previous
« Introduction to Temporal Cloud Temporal 101 with Go »

® P Temporal REPLAY! X

https://www.temporal.iolreplay & 0O

sign Up for Cloud

< c

<€> Temporal

How it Works Docs Learn Cloud Pricing Blog Use Cases Replay ©

REPLAY

Last month, we gathered Temporal
experts from around the world to
share best practices and how-to's.

You can check out ALL the
videos at the Replay site:

https://temporal.io/replay/videos

Replay 2023

REPLAV ;v

KEYNOTE: THE WAY FORWARD
FOR EVENT-DRIVEN
2 ARCHITECTURES

S| MAXIM FATEEV

@®

Keynote: The way forward
for event-driven
architectures

Maxim Fateev
Temporal

_ REPLAV i

2 ORCHESTRATING COMPLEX /
CUSTOMER-DEFINED DAGS WITH
2 TEMPORAL 5

= ROBERTO FERNANDEZ

Orchestrating complex
customer-defined DAGS
with Temporal

Roberto Fernandez
Retool

REPLAV

ATTITUDE OF ITERATION:
COUNTING YOUR CHALLENGES
= ON ONE FINGER

ERIC JOHNSON

Attitude of Iteration:
Counting your challenges on
one finger

Eric Johnson
AWS

REPLAVY ;s

: TEMPORAL AT YUM! BRANDS: A
YEAR LATER

S MATT MCDOLE

Temporal at Yum! Brands: a
year later

Matt McDole
Yum! Brands

REPLAV "

KEYNOTE: PRODUCT é\\/

L

Keynote: Product
Announcements

Samar Abbas Preeti Somal
Temporal

. REPLAV:i

£ FROM MONOLITH TO
WORKFLOWS: OUR JOURNEY AT
3 TWILIo

S| SAI PRAGNA ETIKYALA

From Monolith to Workflows:
our journey at Twilio

Sai Pragna Etikyala
Twilio

Implementing Batch Jobs
With Temporal

Outline

Definition of batch
Naive Approach
Heartbeating Activity
lterator Workflow
Sliding Window

Batch Job

Workflow

—

Naive

public int processBatch() {
List<SingleRecord> records = recordLoader.getRecords();
for (SingleRecord record : records) {
RecordProcessorWorkflow processor =
Workflow.newChildWorkflowStub(RecordProcessorWorkflow.class);
processor.processRecord(record);

}

return records.size();

Naive Implementation

e Drawback
o Batch size limit
e Advantage
o Simplicity
e Improvements
o Parallel record processing

Activity

public int processRecords() {
for (int i = 0; ; i++) {
Optional<SingleRecord> record = recordLoader.getRecord(i);
if (!record.isPresent()) {
return i;

}

recordProcessor.processRecord(record.get());

Activity

e Drawbacks

o Only fast record processing

o No poison pill support

o Reprocessing of the whole dataset on retries
e Advantage

o Low resource utilization
e |Improvements

o Parallel record processing

o Parallel activities

Activity

e Drawbacks

o Only fast record processing

o No poison pill support

o Reprocessing of the whole dataset on retries
e Advantage

o Low resource utilization
e Improvements

o Parallel record processing

o Parallel activities

o Activity heartbeating

Heartbeating Activity

public int processRecords() {

ActivityExecutionContext context = Activity.getExecutionContext();
Optional<Integer> heartbeatDetails = context.getHeartbeatDetails(Integer.class)
int offset = heartbeatDetails.orElse(other: 0);
while (true) {

Optional<SingleRecord> record = recordLoader.getRecord(offset);

if (!record.isPresent()) {

return offset;

}

recordProcessor.processRecord(record.get());

offset++;

Heartbeating Activity Workflow

public final class HeartbeatingActivityBatchWorkflowImpl
implements HeartbeatingActivityBatchWorkflow {

private final RecordProcessorActivity recordProcessor =
Workflow.newActivityStub(
RecordProcessorActivity.class,
ActivityOptions.newBuilder()
.setStartToCloseTimeout (Duration.ofHours(1))
.setHeartbeatTimeout (Duration.ofSeconds(10))
.build());

@Override
public int processBatch() {
return recordProcessor.processRecords();

Heartbeating Activity

e Drawbacks
o Only fast record processing
o No poison pill support

e Advantage
o Low resource utilization

e Improvements
o Parallel record processing
o Parallel activities

Iterator Workflow

e Load a page of records using an activity
e Process each record by a child workflow
e (Call continue-as-new to process the rest of records

Iterator Workflow

public int processBatch(int pageSize, int offset) {

List<SingleRecord> records = recordLoader.getRecords(pageSize, offset);

for (SingleRecord record : records) {
RecordProcessorWorkflow processor =

Workflow.newChildWorkflowStub(RecordProcessorWorkflow.class);

processor.processRecord(record);

}

if (records.isEmpty()) {
return offset;

}

return nextRun.processBatch(pageSize, offset: offset + records.size());

Iterator Workflow

e Drawbacks
o The throughput depends on the slowest workflow in
each iteration
o Creates spiky resource utilization pattern
e Advantage
o Unlimited dataset size
e |Improvements
o Parallel record processing
o Parallel iterator workflows

Sliding Window

Starts a predefined number (window size) of child workflows
Parent calls continue-as-new

A child upon processing a record signals the parent

The parent starts the next child workflow upon receiving the signal

Sliding Window

e Drawbacks

o Complexity
e Advantage

o Even resource utilization
e Improvements

o Parallel sliding windows

Recap

Naive

Heartbeating activity
lterator

Sliding Window

https://qithub.com/temporalio/samples-java/tree/main/core/src/main/java/io/tempo
ral/samples/batch

https://github.com/temporalio/samples-go/tree/main/batch-sliding-window

https://github.com/temporalio/samples-java/tree/main/core/src/main/java/io/temporal/samples/batch
https://github.com/temporalio/samples-java/tree/main/core/src/main/java/io/temporal/samples/batch
https://github.com/temporalio/samples-go/tree/main/batch-sliding-window

Questions

<6> lTemporal

AGENDA

SCALING LONG RUNNING OPERATIONS AT SNYK

AGENDA

FROM POC TO PRODUCTION WITH TEMPORAL

About me

{»

esign

code revew WWOTKEr TUNING

Best Practices
Performance g Observability

asen

Put yourself in

Yg:: éourney 1S best position for
y ' success.
I PROD

Demo

28

THANK YOU...

