
All rights reserved by Postman Inc

Supercharging Asynchronous 
workflows with Temporal.io

Samith Bharadwaj | @samithbharadwaj

Software Engineer, Postman



Understanding Pull Requests in Postman



Unpacking the Problem

@getpostman | @samithbharadwaj



PR Merge Experience: Before Temporal.io

@getpostman | @samithbharadwaj

https://docs.google.com/file/d/1MBea70U23akQESR2e9brNqS5L-Aq0kCN/preview


Merge Inefficiencies and problems

@getpostman | @samithbharadwaj

● Product experience is time and UI blocking
Merging large PRs can result in user frustration due to extended wait times before being able to use 
the product

● Merge a PR is unreliable
With merging being a complicated distributed transaction, it often lead to unpredictable failures

● Downstream service errors result in the entire merge process 
returning a failure
Lacked necessary mechanisms to recover from dependent service failures

● Non deterministic end states reached due to low predictability 
False positives and negative merge completion statuses confused the user



PR Merge Internals

@getpostman | @samithbharadwaj



PR Merge Internals

@getpostman | @samithbharadwaj



Crafting an effective solution

● Making the PR merging experience asynchronous
With Temporal, we can establish a queue and worker setup to make the process 
async.

● Reliable distributed transactions
Retries and Timeouts at an activity level provided by temporal help with 
increasing reliability across the entire process

● Observability and Event Sourcing
With temporal, observability is provided out of the box along with effective 
state tracking for workflows

● Code/Service reusability
Business logic from existing services should be reusable in the async 
workflows. 

@getpostman | @samithbharadwaj



Merge experience after using Temporal

@getpostman | @samithbharadwaj

https://docs.google.com/file/d/1do5OCgt0qMM0mgNOLQLi_dK5HQCZitF1/preview


Post Temporal Integration: Pull Request Usage

● Increased adoption of 
pull requests
PR adoption rate increased by 30.71% 
after the introduction of the new 
merging experience

● Decrease in merging 
failures
With Temporal, retires and rollbacks 
of transactions have helped bring 
down the error rate by 43%

@getpostman | @samithbharadwaj



● Internal SDK to use temporal across teams and services
With increased adoption of temporal within Postman, the sdk helps with easy 
onboarding, standardising security standards, data exchange formats, etc.

● Increased adoption for various use cases
Higher throughput and critical workflows are now using temporal within Postman. 
Some of them are:

- Deleting, Replicating a workspace (~200k workflows and ~1M activities p.m)
- Publishing, Deleting an API(~50k workflows and ~1M activities p.m)

Future of Temporal @ Postman

@getpostman | @samithbharadwaj



Thank you

@getpostman | @samithbharadwaj


