
How Temporal Simplified Checkr Workflows 1

How Temporal Simplified Checkr
Workflows
This case study is based on an interview with Ben Jacobson who was a key
player in Temporal* adoption within Checkr

Problem:

In the last decade, the growth of the gig economy has put background checks in
the critical path of employers such as Uber, Lyft, Grubhub, etc. Traditionally,
background checks have been discriminatory, tedious, and inaccurate. Checkr
was founded to usher in a new era of automated background checks, bringing
reliability and consistency to a historically unreliable and inconsistent process.

Running a background check is a multi-staged process which consists of both
automated and manual steps. An automated step might be reaching out to a
microservice to do a search in a database we maintain or sending a request to a
court researcher at a court house. This might be followed by analyzing each
record via another microservice and, depending on the result, escalating to a
quality assurance expert to manually review a record before sending
downstream. This whole process could take minutes, hours, or even days.

How was this solved before:

Although validation is a background process which can take days, it's often the
blocker for slow background checks. This means validation is a critical process
and Checkr needs a scalable method of managing a huge number of parallel
validations. Furthermore, the moment any validation finishes, appropriate action
needs to be taken based on the result.

Until switching to Temporal, Checkr solved this problem using an in-house
solution powered by standalone databases and Kafka queues. As this was not a
general purpose workflow system, Checkr developers were also required to
implement a complex state machine to ensure the consistency of the validation

https://www.linkedin.com/in/bjacobso/

How Temporal Simplified Checkr Workflows 2

process. It didn't take long for the true cost of this in-house solution to become
apparent:

It's homegrown nature meant that there were no official mechanisms provided
for updating the state machine running in the live system.

New hires were immediately required to study and understand the Checkr
specific state machine architecture, regardless of the team/area they were
hired for.

Even when things went as expected, the system was not as reliable as
desired.

A Clear Need for Change:

Checkr was confronted with the challenge of finding a solution that would fit their
arbitrary-length workflow needs and scale with their growth. A number of
candidate workflow systems were considered:

Zeebe

AWS Step Functions

Netflix Conductor

Apache Airflow

And judged against key requirements:

vendor lock-in

scalability

maturity

DSL

Going into the process, there was a strong belief that a DSL Domain Specific
Language - such as SQL based workflow solution was going to be the best bet.
After Checkr engineers prototyped some workflows in code with Temporal, they
started to reconsider the need for a DSL. The short experiment had convinced
them that understanding and testing workflows written as code was
fundamentally easier than with a DSL.

How Temporal Simplified Checkr Workflows 3

After prototyping workflows in code using Temporal, we
refocused our efforts towards that because of the easier
understanding and testability of those workflows

Migrating to Temporal:

While Checkr was fairly confident in their choice to use Temporal, it wasn't
practical to migrate all of their workflows at once. Instead, specific components
and flows within the system were migrated one by one. Each migration meant
refactoring a single section of their data pipeline to use Temporal workflows
instead of the existing Kafka based solution. This enabled the team to migrate at
their own pace, without affecting the live system.

In addition to migrating existing aspects of the pipeline, Checkr began
encouraging engineers to build new features and flows with Temporal. Teams
started to notice the increase in productivity and reliability that Temporal offers,
and internal adoption grew rapidly. Today all new data sources used during
background checks are implemented with Temporal. This is not a requirement but
a choice by the Checkr developers.

All new data sources incorporated into our background checks
are now done via Temporal, and more specifically by choice of
the engineering team working on it.

Looking back:

Since switching to Temporal, the way we think about the Checkr product has
simplified and the happiness of developers has increased. Learning to model their
problems as workflows and activities actually helped clarify the core product.
Modeling things as workflows and activities makes inter-team sharing possible,
meaning that code is continuously reused and not continuously reinvented.

Developer happiness has increased. Thinking about our
problems in terms of workflows and activities has clarified our
product and now allow us to share workflow components with
different teams.

How Temporal Simplified Checkr Workflows 4

The team has also noticed benefits from the switch that they never initially
expected. Observability in both development and production has dramatically
improved. Testing distributed parts of the system together not only became
possible but enjoyable.

Being able to see step by step what is happening, what path a
workflow took, is very valuable.

Whats next:

Developers at Checkr who use Temporal love the technology. Usage has grown
outside the core use case and new teams are evaluating it for future projects. It's
possible that the entire background process might one day even be a Temporal
workflow.

Working with Temporal:

Great, the team has been very helpful when we have
questions, the slack community is very active and we've even
been able to contribute to the project with thoughtful
feedback.

